Adsorption of Transgenic Insecticidal Cry1Ab Protein to SiO2.
1. Forces Driving Adsorption

MICHAEL SANDER,* MICHAEL MADLIGER, AND RENÉ P. SCHWARZENBACH
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland

Received December 8, 2009. Revised manuscript received October 6, 2010. Accepted October 7, 2010.

Genetically modified Bt crops express insecticidal Cry proteins (Bt toxins) that may enter agricultural soils. A mechanistic understanding of Cry protein adsorption to soils is critical for risk assessment, as this process governs Cry protein fate and bioavailability. We used quartz crystal microbalance and optical waveguide lightmode spectroscopy to elucidate the driving forces of the adsorption of monomeric Cry1Ab to negatively charged quartz (SiO2) and positively charged poly-L-lysine (PLL) at pH 5–8 and constant ionic strength of 50 mM (NaCl). Bovine serum albumin and hen egg white lysozyme were used as reference proteins because of their known adsorption behavior. Electrostatics governed Cry1Ab adsorption; as pH increased above the isoelectric point of Cry1Ab, the initial rate and the extent of adsorption decreased on SiO2 and increased on PLL. Reversible adsorption to SiO2 suggested weak Cry1Ab-SiO2 electrostatic interactions and no irreversible conformational changes of Cry1Ab at the surface. High conformational stability of Cry1Ab was further supported by supply rate-independent extent of adsorption of Cry1Ab to apolar gold. Some evidence is presented that the nonuniform surface charge distribution of Cry1Ab resulted in patch-controlled electrostatic attraction with sorbents that carried the same net charge as Cry1Ab. A more detailed discussion of this mechanism is given in a companion paper.

Introduction

Genetically modified Bt crops express one or more gene sequences from the bacterium Bacillus thuringiensis that code for insecticidal Cry proteins (Bt toxins), which provide protection against specific pest insects. Since their market introduction in 1996, Bt crops became an integral component of pest management practices in many countries. Bt maize is the second most common transgenic crop, grown on ~42 million hectares, worldwide, in 2009 (1). By various pathways, Cry proteins may be released to soils, where they have been detected in the μg kg⁻¹ range (2, 3). Some Cry proteins were shown to persist in soil for months following harvest and some to remain insecticidal in soils (2–6). Concern has been raised that Cry proteins in soils may accumulate over time and adversely affect nontarget soil-dwelling organisms (6). Assessing these risks requires that the processes governing the fate of Cry proteins in soils, most importantly the adsorption to mineral and organic soil surfaces, are under- stood. Adsorption affects protein mobility, bioavailability, degradability, and, hence, persistence and accumulation. Desorption of adsorbed Cry proteins upon changes in solution chemistry may result in spatially and temporally high pore water Cry protein concentrations.

Previous studies have investigated adsorption of Cry proteins to clay minerals, iron- and aluminum (hydr-)oxides, silica, mica, humic acids, and natural soils (e.g. refs 7–12). A molecular level picture of Cry protein adsorption, however, is missing. Advancing this picture requires experiments in which purified proteins are used, the solution pH and ionic strength (I) are properly controlled, and adsorbed protein is directly quantified on the sorbent surface (and not indirectly via solution depletion). None of the previous studies has met all of these requirements.

The goal of the work presented in this and a companion paper (13) was to identify the major driving force(s) for Cry protein adsorption to charged, polar surfaces. Electrostatic and van der Waals (vdW) interactions play a major role in the adhesion of proteins with surfaces (7–10), while the hydrophobic effect is considered less important. If adsorbed proteins undergo conformational changes on the sorbent surface, these changes result in a gain in protein conformational entropy (11–14), which additionally drives adsorption. Interfacial conformational changes also increase the number of protein segments that interact with the sorbent surface and, hence, the activation free energy for desorption, leading to irreversible adsorption. For proteins with low interfacial conformational stabilities, this driving force may lead to adsorption even when protein-sorbent electrostatic interactions are repulsive. The conformational stability of Cry proteins and hence the significance of this process in the adsorption of Cry proteins is unknown.

In this paper, we discuss the relative importance of electrostatic interactions, vDW interactions, and conformational changes in the adsorption of Cry1Ab to charged polar surfaces at a constant ionic strength (I = 50 mM). Cry1Ab is expressed by several commercially important Bt maize events and served as a model Cry1A protein. The net surface charge of Cry1Ab changes from positive at pH 5 to negative at pH 7 and 8. Cry1Ab, however, has a nonuniform surface charge distribution (Table 1). Cry1Ab adsorption was compared to adsorption of two well-studied reference proteins, bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) that have different surface net charges and conformational stabilities (Table 1). Quartz (SiO2) and poly-L-lysine (PLL) polymeric films served as model surfaces, which were negatively and positively charged over the tested pH range, respectively. To assess the relative Cry1Ab conformational stability, proteins were also adsorbed to an apolar gold surface at pH 6.

Adsorption was studied by a combination of two in situ surface techniques, quartz crystal microbalance with dissipation monitoring (QCM-D), the primary technique, and optical waveguide lightmode spectroscopy (OWLS). Both techniques allow direct and label-free quantification of the kinetics, extents, and reversibility of protein adsorption. QCM-D senses the “wet” mass of adsorbed proteins (i.e., adsorbed protein plus protein-associated water), whereas OWLS senses only the absolute (“dry”) adsorbed protein mass. These techniques have previously been combined to characterize protein adsorption (15).

Experimental Section

Proteins and Chemicals. Cry1Ab (provided by M. Pusztai-Carey, Case Western Reserve University, Cleveland, OH, USA)
was extracted from protoxin from *Bacillus thuringiensis* subsp. *kurstaki* HD-1, expressed as a single gene product in *E. coli*, activated, purified, and lyophilized (details in section S1, Supporting Information (SI)). High purity HEWL and BSA (>99%, lyophilized) were from Fluka and Sigma, respectively, and used as received. The physicochemical properties of Cry1Ab, HEWL, and BSA are given in Table S1 (SI). The preparation of protein solutions and of Cry1Ab quantification is described in section S2 (SI). All chemicals used were analytical grade (section S1, SI).

**Sorbents.** SiO₂-coated QCM-D sensors (QXS303; Q-Sense) and SiO₂-coated OWLS waveguides (OW2400 sensor chips; Microvacuum Ltd., Budapest, Hungary) were used as model quartz surfaces (isoelectric point (IEP) PLL≈ 4 nm) of monomeric Cry1Aa (8) (section S1, SI). Based on primary sequence (section S1, Supporting Information (SI)).

**Table 1. Physicochemical Properties of Transgenic Cry1Ab Protein and Reference Proteins Bovine Serum Albumin and Hen Egg White Lysozyme**

<table>
<thead>
<tr>
<th></th>
<th>Cry1Ab</th>
<th>Bovine serum albumin (BSA)</th>
<th>Hen egg white lysozyme (HEWL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>molecular weight</td>
<td>66.6 kDa</td>
<td>66.4 kDa</td>
<td>14.3 kDa</td>
</tr>
<tr>
<td>molecular shape and size</td>
<td>Elongated</td>
<td>Heart shaped</td>
<td>Ellipsoid</td>
</tr>
<tr>
<td></td>
<td>7.6x6.2x5.0 nm</td>
<td>Side length: 7.5 nm; thickness: 5 nm</td>
<td>4.2x3.0x3.0 nm</td>
</tr>
<tr>
<td>conformational stability</td>
<td>unknown</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>isoelectric point</td>
<td>total 6.0 (6.4)</td>
<td>domain I 4.7; domain II 9.4; domain III 9.6</td>
<td>total 5.5 (5.6); domain I 5.3; domain II 7.6</td>
</tr>
<tr>
<td>diffusion coefficient D</td>
<td>5.35x10⁻⁷ cm² s⁻¹</td>
<td>6.09x10⁻⁷ cm² s⁻¹</td>
<td>1.23x10⁻⁷ cm² s⁻¹</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain I</td>
<td>Domain II</td>
<td>Domain III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ \Delta m_{QCM-D} = \Delta m_{\text{protein}} + \Delta m_{\text{water}} = C \cdot \frac{-\Delta f_n}{n} \] (1)

\[ \Delta m_{\text{OWLS}} = d_{\text{adlayer}} \cdot \frac{n_{\text{adlayer}} - n_{\text{solution}}}{d_{\text{protein}}/d_{\text{protein}}} \] (2)

where \( C = 17.7 \text{ ng Hz}^{-1} \text{ cm}^{-2} \) is the mass sensitivity constant. In most systems, normalization to \( n = 3 \) to 11 resulted in overlapping frequency curves and the investigated films showed small dissipation values \( \Delta D \), such that eq 1 was valid. All reported \( \Delta m_{QCM-D} \) were calculated from \( n = 5 \) (25 MHz). **OWLS measurements** were conducted on an OWLS 110 instrument (Microvacuum Ltd., Budapest, Hungary). Solutions were run through a laminar slit shear flowcell over a planar waveguide. An optical grating at the waveguide-water interface couples a He-Ne laser into the waveguide. Adsorption of proteins to the interface changes the phase shifts of the transverse electric and transverse magnetic polarization modes of the laser (24). Assuming an optically uniform adsorbed layer, the mass of adsorbed protein, \( \Delta m_{\text{OWLS}} \), is given as
by NaCl) were pumped with a peristaltic pump over the sensors/waveguides until the signal baseline remained stable.

(ii) Adsorption: Protein-containing solutions (1–10 µg protein mL⁻¹) of the same pH and I were run over the sensors/waveguides. Protein adsorption in most systems plateaued at a final adsorbed mass. (iii) Rinsing: The systems were rinsed with protein-free solutions of the same pH and I to study adsorption reversibility. All experiments were carried out at 20.0 (±0.1 °C and at least in duplicates.

Adsorption data were analyzed for initial protein adsorption rates \(k_{\text{ads}}\) (ng cm⁻² min⁻¹), final adsorbed masses \(\Delta m_{\text{final, QCM-D}}\) and \(\Delta m_{\text{final, OWLS}}\) (ng cm⁻²), and for adsorption reversibility (Figure S5). \(k_{\text{ads}}\) between QCM-D and OWLS measurements and between different protein-sorbent systems were compared on the basis of the dimensionless adsorption efficiency \(\alpha\)

\[
\alpha = \frac{k_{\text{ads}}}{k_{\text{ads}}^\text{max}} \tag{3}
\]

where \(k_{\text{ads}}^\text{max}\) (ng cm⁻² min⁻¹) is the maximum possible, transport-limited adsorption rate (i.e., no energy barrier to adsorption). While theoretical \(k_{\text{ads}}^\text{max}\) were calculated for the OWLS system (section S4, SI), the more complex flow pattern in the QCM-D cell did not allow calculation of corresponding \(k_{\text{ads}}^\text{max}\). \(\alpha\) describes the fraction of protein-sorbent encounters that result in adsorption relative to transport-limited adsorption in the absence of an energy barrier to adsorption (\(\alpha = 1\)).

Results and Discussion

Representative QCM-D and OWLS plots for the adsorption of Cry1Ab, BSA, and HEWL to SiO₂ and PLL at pH 5 to pH 8 are provided in Figures S6 and S7 (section S4, SI). The results of all replicate measurements are given in Tables S1 and S2 (section S4, SI).

Transport-Limited Protein Adsorption Rates. In the OWLS setup, the highest initial adsorption rates \(k_{\text{ads}}\) (43.8 ± 1.7 ng cm⁻² min⁻¹) of Cry1Ab to SiO₂ were measured at pH 5. These rates agreed very well with the calculated transport-limited initial adsorption rate \(k_{\text{ads}}^\text{max}\) for monomeric Cry1Ab (46.7 ng cm⁻² min⁻¹; section S4, SI). Similarly, the highest \(k_{\text{ads}}\) found for the adsorption of BSA to PLL (48.0 ± 1.2 ng cm⁻² min⁻¹) and HEWL to SiO₂ (83.2 ± 20.3 ng cm⁻² min⁻¹) at pH 7 agreed well with the respective \(k_{\text{ads}}^\text{max}\) of the monomeric proteins (50.9 and 81.4 ng cm⁻² min⁻¹, respectively; section S4, SI). These findings indicate that the initial adsorption rates in these protein-sorbent systems were transport limited. We therefore used these initial adsorption rates, measured by OWLS and QCM-D, as \(k_{\text{ads}}^\text{max}\) to calculate \(\alpha\) from the OWLS and QCM-D measured \(k_{\text{ads}}\) respectively (eq 3).

Adsorption Efficiencies and Final Adsorbed Amounts. Figure 1 shows the adsorption efficiencies (\(\alpha\)) as a function
of pH for all protein-sorbent systems and the corresponding final adsorbed mass on the QCM-D ($\Delta m_{\text{QCM-D}}$) and OWLS ($\Delta m_{\text{OWLS}}$), which was quantified when adsorption plateaued or, for protein-sorbent systems in which adsorption did not plateau during the adsorption period, when rinsing was initiated.

**Comparison of QCM-D and OWLS.** Overall, $\alpha$ values determined by QCM-D and OWLS showed good quantitative agreement in all protein-sorbent systems, except for Cry1Ab adsorption to SiO$_2$ at pH $\geq 6$, for which $\alpha$ values showed the same pH trends but were larger for QCM-D than OWLS measurements. Furthermore, the $\alpha$ values in the Cry1Ab-SiO$_2$ system at pH $\geq 6$ showed the largest uncertainties among all tested systems. As subsequently discussed, these findings reflect the relatively weak Cry1Ab-SiO$_2$ interaction and were, at least in part, ascribable to slight physicochemical differences in the SiO$_2$ surfaces of the QCM-D sensors and OWLS waveguides.

QCM-D and OWLS yielded consistent trends of $\Delta m_{\text{QCM-D}}$ and $\Delta m_{\text{OWLS}}$ with pH and sorbent net charge, while, as expected, $\Delta m_{\text{QCM-D}}$ were always larger than $\Delta m_{\text{OWLS}}$, because QCM-D senses protein-associated water. Changes in pH that affected protein-sorbent affinities were consistently reflected in both the magnitude of initial kinetics ($\alpha$) and in the final extent of protein adsorption ($\Delta m_{\text{QCM-D}}$ and $\Delta m_{\text{OWLS}}$). For the sake of brevity, discussion of $\Delta m_{\text{QCM-D}}$ and $\Delta m_{\text{OWLS}}$ will subsequently be denoted by $\Delta m_{\text{final}}$. The exact values of $\alpha$ and $\Delta m_{\text{final}}$ are provided in Tables S1 and S2 (SI).

For Cry1Ab adsorption to SiO$_2$, $\alpha$ decreased with increasing pH from $\alpha \approx 1$ at pH 5 to $\alpha < 0.02$ at pH 8 (Figure 1a). Hence, 50 times as many Cry-SiO$_2$ encounters were required at pH 8 to result in one adsorption event as compared to the transport-limited adsorption rates. Compared to SiO$_2$, adsorption to positively charged PLL showed the opposite pH-dependent trend (Figure 1b) of $\alpha$, with $\alpha \approx 0.24$ at pH 5 and $\alpha \approx 1$ at pH 6–8.

The finding of $\alpha \approx 1$ of Cry1Ab to SiO$_2$ at pH 5 and to PLL at pH 6–8 implies that Cry1Ab was monomeric at all tested pH. The decrease in $\alpha$ to SiO$_2$ with increasing pH can, therefore, be rationalized by decreasing affinities of the monomeric Cry1Ab to SiO$_2$. The finding of monomeric Cry1Ab stands in contrast to refs 8 and 12, which reported that Cry1Aa formed oligomers composed of more than ten monomers at $< 150$ mM and circumneutral pH. Cry1Ab oligomers of that size would have resulted in $k_{\text{obs,PLL}} < 28$ ng cm$^{-2}$ min$^{-1}$ in the OWLS setup, which is much smaller than the experimental $k_{\text{PLL}}$. Since the physicochemical properties of Cry1Aa and Cry1Ab are quite similar (88% sequence homology), they cannot be invoked to explain the apparently different tendencies of the proteins to oligomerize. Oligomerization in refs 8 and 12 may therefore have resulted primarily from the use of up to 100-fold higher Cry1Aa concentrations as compared to the Cry1Ab concentrations used in this study.

Consistent with the pH trends of $\alpha$, with increasing pH $\Delta m_{\text{final}}$ of Cry1Ab decreased to SiO$_2$, while it increased to PLL (Figure 1c,d). The inverted pH trends on the oppositely charged sorbents strongly suggest that Cry1Ab-sorbent electrostatic interactions played a major role in adsorption. Increasing the negative surface charge of Cry1Ab with increasing pH resulted in decreasing Cry1Ab-SiO$_2$ electrostatic attraction and in increasing electrostatic attraction in the Cry1Ab-PLL system.

BSA served as a reference protein with a low conformational stability and with a similar molecular size and IEP as Cry1Ab (Table 1). Electrostatic repulsion of BSA from like-charged SiO$_2$ explains, at least in part, the decrease in $\alpha$ and $\Delta m_{\text{final}}$ of BSA to SiO$_2$ with increasing pH (Figure 1e,g). Previous work has shown that significant BSA adsorption to SiO$_2$ at pH $> \text{IEP}_{\text{BSA}}$ despite electrostatic repulsion was due to interfacial conformational changes of BSA (26,27). Similar to Cry1Ab, initial adsorption rates of BSA to PLL were transport-limited at pH 6 to 8, and adsorption was extensive (Figure 1f,h), reflecting electrostatic attraction of net negatively charged BSA to positively charged PLL.

In contrast to BSA, HEWL has a high conformational stability and, in contrast to Cry1Ab, a uniform surface charge distribution. Therefore, changes in the orientation of HEWL to SiO$_2$ only slightly modify overall strong electrostatic attraction, resulting in $\alpha \approx 1$ from pH 5–8 and in $\Delta m_{\text{final}}$ values that were only slightly affected by solution pH (Figure 1i,k), which is consistent with refs 28 and 29. Conversely, all orientations of HEWL to PLL resulted in electrostatic repulsion, leading to approximately 30-fold lower $\alpha$ values relative to Cry1Ab and resulted in the conservation of SiO$_2$ surface to $\Delta m_{\text{final}}$ values (Figure 1j,l). The large difference in $\alpha$ and $\Delta m_{\text{final}}$ values between SiO$_2$ and PLL also provides good evidence that PLL coated most of, if not, the entire SiO$_2$ surface.

**Monolayer Adsorption.** Systems with transport-limited adsorption ($\alpha \approx 1$) plateaued at reproducible $\Delta m_{\text{final}}$ (Figure 1, Tables S1, S2), which, for numerous reasons, can be assumed to correspond to protein monolayers: (i) Adsorption of Cry1Ab and BSA to PLL at pH 7 from solutions that covered a factor of 20 in the protein concentration plateaued at comparable $\Delta m_{\text{final,SiO}_2}$ value of 620 and 640 mg cm$^{-2}$, respectively (Figure S9, SI). Such concentration-independent maximum adsorbed masses imply that adsorption was limited by the number of adsorption sites. Furthermore, similar $\Delta m_{\text{QCM-D}}$ and $\Delta m_{\text{OWLS}}$ of Cry1Ab and BSA to SiO$_2$ at pH 5 and to PLL at pH 6 to 8 (Figure 1; Tables S1, S2) were consistent with comparable monolayer adsorbed masses of globular proteins with comparable sizes. $\Delta m_{\text{final}}$ of HEWL were smaller due to its smaller molecular weight and hence less adsorbed mass per protein footprint. (ii) The experimental $\Delta m_{\text{final,SiO}_2}$ and $\Delta m_{\text{final,PLL}}$ of Cry1Ab, BSA, and HEWL corresponded well to the respective theoretical "wet" and "dry" adsorbed masses of full monolayers, calculated based on the molecular dimensions of the proteins (section S3, SI). (iii) Viscoelastic modeling of the QCM-D frequency and dissipation values of several overtones resulted in an estimated adlayer thickness of ~6–7 nm for Cry1Ab and BSA and ~3 nm for HEWL (section S5, SI), which corresponded well to the molecular dimensions of the proteins and, hence, monolayer adsorption. (iv) The ratios of $\Delta m_{\text{QCM-D}}$ and $\Delta m_{\text{OWLS}}$ of Cry1Ab and BSA adsorption to SiO$_2$ at pH 7–8 were consistent with previously published values for the contribution of protein mass to the total QCM-D sensed mass in full protein monolayers (15,30).

Lower $f_{\text{prot}} \approx 8–9\%$ for Cry1Ab and BSA adsorption to SiO$_2$ at pH 7–8 are consistent with refs 15 and 30, reflecting that the mass of water that couples to each protein molecule is larger at lower sorbent surface coverage. (v) As subsequently discussed, adsorption was irreversible in all systems with $\alpha = 1$, except for Cry1Ab-SiO$_2$ at pH 5. Irreversible adsorption implies that adsorption BSA, ante a maximum (jamming) concentration of proteins on the sorbent surface was attained, corresponding to a monolayer.

**Reversibility.** Adsorption in all investigated protein-sorbent systems was largely irreversible, except for Cry1Ab adsorption to SiO$_2$ (decrease in $\Delta m_{\text{QCM-D}}$ and $\Delta m_{\text{OWLS}}$ during buffer rinsing: Figures S6 and S7). Reversible Cry1Ab-SiO$_2$ interactions imply (i) that adsorbed and solution phase Cry1Ab molecules were in dynamic equilibrium (adsorption plateaued because the adsorptive equaled the desorptive protein fluxes), (ii) that the sum of Cry1Ab-SiO$_2$ electrostatic and vdW interactions were relatively weak, and (iii) no extensive, irreversible conformational changes of adsorbed Cry1Ab, which would have resulted in adsorption irreversibility. Conversely, irreversible adsorption of BSA to SiO$_2$ at pH $> \text{IEP}_{\text{BSA}}$ is consistent with conformational changes of BSA on SiO$_2$. vdW interactions most likely did not cause
irreversible adsorption of BSA to SiO₂, as vdW interactions for the similarly sized Cry1Ab, which adsorbed reversibly, must have been comparable. The difference in Cry1Ab and BSA adsorption reversibility shows that their adsorption was governed by different driving forces despite the similar effects of pH and sorbent net charge on the kinetics and extents of Cry1Ab and BSA adsorption to SiO₂ (and PLL). Irreversible adsorption of HEWL to SiO₂ reflected strong electrostatic attraction due to the high positive surface charge density of HEWL over the investigated pH range (pH < IEPHEWL).

**Driving Forces for Cry1Ab Adsorption to SiO₂.** The importance of electrostatic interactions of Cry1Ab with charged sorbents is apparent from the effects of pH and sorbent net charges on Cry1Ab adsorption. However, Figure 1 shows that Cry1Ab adsorbed also to like-charged SiO₂ at pH > IEPCRY1Ab and to like-charged PLL at pH < IEPCRY1Ab. There are two possible explanations for Cry1Ab adsorption in these systems. The first explanation assumes that the surface net charge of Cry1Ab governed its electrostatic interactions with charged sorbents. In this case, Cry1Ab-sorbent electrostatic repulsion had to be overcompensated by additional Cry1Ab-sorbent interaction forces. The second explanation assumes that Cry1Ab was oriented with positively charged surface patches toward SiO₂ and with negatively charged patches toward PLL. Such patch-controlled electrostatic attraction is conceivable based on the nonuniform surface charge distribution of Cry1Ab (Table 1). These two alternative explanations will be subsequently evaluated.

Electrostatic repulsion may, in principle, be overcompensated by attractive vdW interactions, protein conforma-
tional changes on the sorbent, as for BSA, and the hydro-
phobic effect. The latter effect must play a small role in the
adsorption of Cry1Ab to SiO₂ surface, due to its high polarity,
as confirmed by small contact angles of water (<5°) measured
on bare SiO₂ sensors. vdW interactions, unlike overcom-
pensated Cry1Ab-SiO₂ electrostatic repulsion at pH > IEPCRY1Ab,
because previous work has demonstrated that electrostatic
interactions predominate over vdW interactions at 1 < 100
mM, even for moderately charged proteins (31). Furthermore,
weaker vdW interactions are expected between Cry1Ab and
PLL (a water-rich film with low Hamaker constant) than
between Cry1Ab and SiO₂ (larger Hamaker constant as
compared to PLL). vdW interactions, therefore, cannot
explain why Cry1Ab adsorption was irreversible to PLL but
reversible to SiO₂.

Reversible Cry1Ab-SiO₂ interactions suggest that Cry1Ab
did not undergo extensive conformational changes on SiO₂
(see above discussion). To further assess the conformational
stability of Cry1Ab, we studied the effect of protein supply
rate on ΔmQCM-D of all three proteins on gold-coated QCM-D
sensors. Different supply rates were obtained by using
different protein concentrations (2–20 µg mL⁻¹) at a constant
volumetric flow rate (and hence wall shear rate). Gold was
chosen as apolar surfaces induce larger conformational
changes in adsorbed proteins than polar surfaces (32).
Proteins with low conformational stability are expected to
show decreasing ΔmQCM-D with decreasing supply rates. At
low supply rates, adsorbed proteins have more time to
undergo time-dependent interfacial spreading before adjac-
ent sites become occupied by other protein molecules,
resulting in larger protein footprints on the sorbent surface
and, hence, a smaller number of proteins adsorbed in a unit
area of the sorbent (32, 33).

Figure 2 shows ΔmQCM-D versus the product of the protein
bulk concentration, c_protein, and time t. This approach to
normalize different protein concentrations is justified be-
cause the volumetric flow rates, and hence the shear rates,
were constant in each sorbent-protein system. Constant shear
rates are also apparent from k_ads that scaled linearly with the
bulk protein concentration for all proteins (inserts in Figure

![Figure 2: Adsorbed "wet" protein mass ΔmQCM-D on gold-coated QCM-D sensors versus the bulk protein concentration c_protein * time t (pH 6, I = 50 mM). a. Cry1Ab b. bovine serum albumin (BSA), and c. hen egg white lysozyme (HEWL). Inserted graphs: Initial adsorption rates k_ads versus c_protein. The chosen normalization is applicable as the volumetric flow rates Q, and therefore the wall shear rates were constant within each set of experiment (Q = 100 µL min⁻¹ for Cry1Ab and BSA and Q = 50 µL min⁻¹ for HEWL (section S4, SI)).](image-url)
2), which, however, had different effects on Δm_{QCM-D} for the three proteins. For Cry1Ab and HEWL, the concentration-normalized Δm_{QCM-D} overlapped and started to plateau at very similar values. These findings strongly suggest that Cry1Ab and HEWL did not undergo slow kinetic spreading on the surface, consistent for HEWL with its high conformational stability (19, 28). Conversely, the Δm_{QCM-D} of BSA markedly decreased with decreasing solution phase BSA concentrations, resulting from concentration-dependent dynamic equilibria between Au-adsorbed and solution phase BSA molecules. These findings clearly suggest that Cry1Ab has a conformational stability much higher than that of BSA and comparable to that of HEWL. The absence of extensive conformational changes of Cry1Ab on the apolar Au surface strongly suggests conformational stability of Cry1Ab on the more polar SiO2 and, hence, that conformational changes did not drive Cry1Ab adsorption to SiO2 at pH > IEP_{Cry1Ab}.

The preceding discussion gives credence to the second explanation for Cry1Ab adsorption to surfaces of the same net charge as the protein: patch-controlled electrostatic attraction, by which Cry1Ab was oriented with positively charged patches, likely on high-IEP domains II and III, toward SiO2 and with negatively charged patches, likely on low-IEP domain I, toward PLL (Table 1). This mechanism provides a plausible explanation for reversible adsorption of Cry1Ab to SiO2 and irreversible adsorption to PLL as the acidic amino acids on domain I are concentrated on a relatively small surface patch with a high charge density (13, 16), while the basic amino acids in domains II and III are widely distributed over the domain surfaces, resulting in a lower positive surface charge density. The patch-controlled-adsorption mechanism is validated in the companion paper (13), in which we report, among other findings, the effect of ionic strength on the interactions of Cry1Ab with SiO2 and PLL.

Implications

This study demonstrates (i) that electrostatic interactions govern the adsorption of monomeric Cry1Ab to charged, polar surfaces, (ii) that the sum of electrostatic and vdW interaction of Cry1Ab to negatively charged surfaces is weak at pH > 5 and I = 50 mM, resulting in reversible adsorption, and (iii) that Cry1Ab has a high interfacial conformational stability. These findings have several implications. First, we expect that the adsorption of Cry1Ab to charged mineral oxide/(hydr)oxides and clay minerals, are also governed by electrostatic interactions. Weak interactions with negatively charged, polar (mineral) surfaces at pH > 5 are likely to result in reversible, concentration-dependent adsorption. For the assessment of fate, this finding means that adsorbed Cry1Ab proteins will desorb and, hence, be mobilized upon decreasing the solution protein concentration or increasing the solution pH. Third, the high Cry1Ab conformational stability rules out rapid inactivation of adsorbed Cry1Ab in soils due to irreversible loss of its bioactive structure. In fact, the high conformational stability provides a plausible explanation for earlier findings that Cry proteins in soils remain insecticidal (4–6).

In a companion paper (13), we provide a detailed analysis of the effects of Cry1Ab concentration and solution ionic strength on Cry1Ab adsorption to SiO2 and PLL. Forthcoming papers will address the interaction of Cry1Ab with SiO2 particles and with humic acid films, as models for soil organic matter.

Acknowledgments

We thank the Swiss National Science Foundation, National Research Program 59 (Project 405940-115662) for funding, Marianne P. Carey for Cry1Ab, Christoph Moschet for experimental support, and Jeanne E. Tomaszewski, Joel A. Pedersen, Kurt H. Jacobson, Kartic Kumar, Thomas B. Hofstetter, Christopher Gorski, Orane Guillaume-Gentil, and Janos Voros for helpful discussions.

Supporting Information Available

Additional data on the physicochemical properties of the proteins, the experimental procedures, raw QCM-D and OWLS adsorption measurements, estimated film thicknesses, and model calculations (transport limited adsorption rates and monolayer adsorbed masses). This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

(2) Baumgarre, S.; Thebe, C. C. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol. Ecol. 2005, 14 (8), 2539–2551.


ES103008S